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1. INTRODUCTION 

Recent advances in the numerical generation of orthogonal, body-fitted, cur- 
vilinear coordinates [ 1 ] have provided powerful methods which can be potentially 
applicable to the study of the deformation of an interface in moving boundary 
problems. Of particular promise appears to be a method recently proposed by 
Ryskin and Leal [2] for the numerical generation of orthogonal mappings. We 
elected to investigate the applicability of this technique to 2D geometrical domains 
likely to arise in immiscible fluid-fluid displacement processes in porous media. 

Such processes are macroscopically characterized by the existence of two single- 
phase regions, containing displacing and displaced phases, respectively, separated 
by an advancing two-phase zone of variable fluid content, the width of which 
decreases with an increase in the displacement velocity. At high displacement rates, 
the transition zone can be adequately approximated on a macroscopic level by an 
abrupt interface [3], on each side of which single-phase Darcy flow occurs (Fig. 1). 

Following the approach in [2] we consider mapping the physical regions on 
each side ‘of the interface, at a fixed time, into rectangular regions by an orthogonal 

FIG. 1. Physical regions in immiscible displacement processes. 
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transformation determined numerically by the method of weak constraint [2]. This 
paper presents the numerical results obtained in our attempt to generate an 
orthogonal mapping for typical geometries of the region occupied by the displacing 
phase (ABCDA in Fig. l), the mapping for the other region being obtained by an 
identical procedure. 

2. NUMERICAL PROCEDURE 

According to [2] a two-dimensional orthogonal mapping (x, y) --) (5, v) can be 
obtained from the solution of the grid generating equations 

-gf$]+$[$$]=o (la) 

f[f$]+; [j$]=o (lb) 

0<5, 1<1, 

where the shape factor f is defined by 

(2b) 

(2c) 

The above system of equations was discretized using finite differences in a 
staggered grid. The resulting vector equation 

A.u=b, (3) 

where A is a symmetric, pentadiagonal, coefficient matrix, u the coordinate vector 
[;I and b the vector specified by the boundary conditions, was subsequently solved 
by the iterative process [4] I 

u;+1 j= U;j-w [C2,U?+1,j+LZ,U~j+,+a3u;j 

a3 

+a4U;+lJ-1+UsUi-,“+l,jl. (4) 

Here al, a2, a3, a4, a5 are coefficients involving f, while o is the relaxation 
parameter. Details on the numerical algorithm employed can be found in [S]. After 
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each cycle, consisting of updating the values of x and y by applying one or more 
SOR passes, the values off at the boundaries are determined. We use Eq. (2) on 
boundaries where Dirichlet conditions are specified (fixed positions of the boundary 
points), or an a priori distribution on boundaries where Neumann conditions are 
specified (zero normal derivatives), as an extra degree of freedom is available in the 
latter case. Values off in the interior are then obtained using the algebraic inter- 
polation suggested in [2] 

-5(1-rl)f(l,O)-W(l, 1). (5) 

For the generation of orthogonal grids of satisfactory accuracy, various cases 
involving different boundary condition specifications were studied. In all cases, 
Dirichlet boundary conditions for the coordinates x and y were specified on the 
boundaries BC, DA, and AB, BC, CD, respectively. When a complete boundary 
correspondence was prescribed (Case A) Dirichlet conditions were specified on all 
boundaries. We also investigated the cases when boundary correspondence was 
prescribed on BC, CD, DA (Case B), or when boundary correspondence was 
prescribed on boundary BC only (Case C). In the latter cases, Neumann conditions 
on x and y were used, where appropriate, to ensure orthogonality. Table I sum- 
marizes the boundary conditions imposed in each investigation. 

The equation of the interface was typically represented in the parametric form 

x=A+Hcosnrj 

y = dq. (6) 

Parameters A, H control the location and inclination of the interface, respectively 
(hence the severity of the expected effect of density differences in the displacement 

Boundary 

TABLE I 

Boundary Conditions 

Case A Case B Case C 

AB 

BC 

CD 

DA 

x-Dirichlet x-Neumann 
y-Dirichlet y-Dirichlet 

x-Dirichlet x-Dirichlet 
FDirichlet y-Dirichlet 

x-Dirichlet x-Dirichlet 
y-Dirichlet y-Dirichlet 

x-Dirichlet x-Dirichlet 
y-Dirichlet y-Dirichlet 

x-Neumann 
y-Dirichlet 

x-Dirichlet 
y-Dirichlet 

x-Neumann 
y-Dirichlet 

x-Dirichlet 
y-Neumann 
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process), while d denotes the aspect ratio of the geometry studied. Since the 
inclination of the interface is expected to increase as time progresses, the above 
representation allows for a stringent test of the ability of the proposed technique to 
generate satisfactory orthogonal grids for shapes likely to arise in the displacement 
process. Base case studies were carried out by fixing the parameter values to 
A = 0.75, d = 1. The orthogonality of the grid was tested by evaluating at all nodal 
points the angle f3 between two intersecting grid lines according to the expression 

cos6= xtx, + Yr Y, 
(xj + y;p* (x; + yy*. 

At the point in the (4, v) space where maximum deviation from orthogonality 
occurs, the index MD0 = In/2 - 81 was selected to represent the orthogonality 
characteristics of the numerical grid. Convergence was reached when the index 
MD0 at a fixed point stabilized within one decimal point to a constant value. 

3. RESULTS AND DISCUSSION 

This section contains the numerical results obtained for different boundary con- 
dition specifications. In each investigation, the relaxation parameter o and the 
shape factor specification on boundaries where Neumann conditions are prescribed 
were suitably optimized as described in detail below. 

Case A. When complete boundary correspondence was prescribed, Dirichlet 
conditions on the variables x and y were specified along the boundaries of the 
region. Various choices of boundary correspondence were studied ranging from 
equally spaced to exponential nodal distributions. To attain coordinate spacing 
control the interpolation formula for the shape factor (5) was multiplied by the 
control function (l-k sin n5 sin XV). Within the range of our investigation (k vary- 
ing from 0.2 to 0.9) no satisfactory orthogonal grid was obtained. In particular, in 
most of the simulations attempted, the numerical solution did not converge, while 
in cases where convergence was obtained, the orthogonality condition was not 
satisfactory (e.g., MD0 = 40”, for H = 0.15 in a 16 x 16 grid, exponential nodal dis- 
tribution on AB, CD, equidistant on BC, AD). 

These results should be compared to those previously reported for the case of 
complete boundary correspondence. In Figs. 7 and 8 of [2] an orthogonal grid in 
the interior of a region containing an axis on symmetry is obtained, using an 
equally spaced boundary nodal distribution. Our experience indicates that the suc- 
cess of the weak constraint method in producing orthogonal grids in this case is 
primarily attributed to the symmetry of the region. We were able to produce very 
satisfactory results by simulating the symmetric region consisting of the base case 
and its mirror image across the axis AB with equidistant nodal distribution along 
the boundaries (Fig. 2). A low value of the maximum deviation from orthogonality 
resulted, MD0 = 3.7”, for H = 0.15 in a 16 x 16 grid. 
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FIG. 2. Orthogonal grid for symmetric region, Case A, H= 0.15, 16 x 32 grid. 

We conjecture that orthogonal grids of good accuracy given a complete boun- 
dary correspondence can be obtained by the weak constraint method, provided that 
the region under consideration contains a symmetry element and the specified 
boundary nodal distribution is accordingly symmetric. On the other hand, 
generation of accurate orthogonal grids for non-symmetric regions (such as 
ABCDA in Fig. 1) requires that the boundary nodal distribution in some boun- 
daries is left unspecified, as outlined in the following cases. 

Case B. In this investigation Neumann conditions were specified on the x coor- 
dinate at the boundary AB, while Dirichlet conditions following equidistant nodal 
distribution were specified on all other boundaries. 

x=A( on CD 

Y = 4 on BC, DA 

x=A+Hcosmj on BC. 

Along the course of this investigation it was observed that Case B produced results 
consistently better than those in the previous case. Convergence was always 
obtained, while for a particular specification of the shape factor on the boundary 
AB, the maximum deviation from orthogonality varied from 1.3” to 6.5” as H 
varied from 0.05 to 0.25 in a 16 x 16 grid. A typical orthogonal grid generated is 
shown in Fig. 3. 
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FIG. 3. Orthogonal grid, Case B, H = 0.15, 16 x 16 grid. 

Three different representations for f on the boundary AB were studied: 

(i) constant shape factor distribution 

f(L l)= 1, 

(ii) linear shape factor distribution 

f(5, l)=f(O, l)+ Ml, I)-f(O, 1115 

and 
(iii) exponential shape factor distribution 

f(5,l)=f(O, l)+ ML I)--“ml)1 y;py;ly, 

where K is an arbitrary parameter. 
Maximum deviation from orthogonality values for various choices of the shape 

factor distribution are summarized in Table II. It is noticed that both linear and 
exponential distributions result in considerably more accurate orthogonal grids as 
compared to a constant distribution. The case of linear variation of f on AB 
produces orthogonal grids of good accuracy for all values of H studied. On the 
other hand, exponential distribution simulations, although more accurate at low 
values of H, fail to generate orthogonal grids for H = 0.25. 

TABLE II 

Effect of Shape Factor Distribution (Case B)” 

/CL rl) H=0.05 H=O.lO H=0.15 H=0.20 H=0.25 

Constant 
Linear 
Exponential 

(K=0.8) 

10.1” 52.0” - - - 
1.3” 2.4” 3.7” 5.0” 6.5” 
1.3” 2.2” 3.2” 7.1” - 

@ A=0.75, d=l.O, 0=1.8, 16xl6grid. 
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f(5* rl) 

TABLE III 

Effect of Shape Factor Distribution (Case C)” 

H = 0.05 0.10 0.15 0.20 0.25 

AE linear 
CD linear 
DA linear 

0.3" 1.0” 2.0" 3.6" 5.1" 

AB exponential 
CD linear 
DA exponential 

Al? exponential 
CD exponential 
DA exponential 

0.4" 0.9" 2.1" 4.0" 6.8" 

0.4" 0.9" 1.9" 3.6" 5.8" 

u A=0.75, d= 1.0, o= 1.8, 16x 16 grid. 

Case C. In the absence of boundary correspondence, Neumann conditions for 
the x and y coordinates were specified on the boundaries AB, CD, and DA, respec- 
tively, while a boundary nodal distribution was prescribed on boundary BC only 
( y = dq, x = A + H cos ?I?). Orthogonal grids of excellent accuracy were obtained 
for typical values of the system parameters. A significant improvement in accuracy 
over both Cases A and B was observed for all values of H (Table III). As in 
Case B, best results were obtained by specifying a linear or exponential shape factor 
distribution on the boundaries AB, CD, DA. Typical orthogonal grids generated in 
this case are shown in Figs 4, 5, and 6. 

Using Case C with a linear shape factor distribution as a base case, sensitivity 
studies on the effect of various parameters were further carried out. The effect of 
grid size on the orthogonality achieved, the total number of iterations, and the 
computational time required on a computer DEC KLlO are shown in Table IV. It 
is noticed that the maximum deviation from orthogonality decreases with an 
increase in size, although the improvement in accuracy becomes marginal beyond a 
certain value. Thus, although the SOR iterative scheme is O(h2), the error 
introduced by the weak constraint method appears not to be a sensitive function of 

FIG. 4. Orthogonal grid, Case C, H= 0.10, 16 x 16 grid. 
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FIG. 5. Orthogonal grid, Case C, H=0.15, 16x 16 grid. 

h within the range of our investigation. On the other hand, the number of iterations 
and CPU time required for convergence increase significantly with the number of 
grid nodes n, the latter varying in a fashion roughly proportional to n’.*, as 
anticipated [ 51. 

Table V summarizes the effect of the aspect ratio on the maximum deviation 
from orthogonality. As expected, maximum deviations for fixed values of H are 
larger in narrow, long regions (small aspect ratio). The accuracy in orthogonality 
increases monotonically with the aspect ratio, although beyond a certain value of d 
in the range 0.75-1.00, further increase in the aspect ratio has a marginal effect on 
the grid orthogonality. On the other hand, for the low value d = 0.25, the rate of 
convergence is slow, while the orthogonality achieved, at the maximum allowable 
number of iterations, is rather poor. 

For completeness, a study to determine the optimum relaxation factor in the 
iterative scheme employed was also carried out. Due to the large size of the coef- 
ficient matrix an explicit evaluation of the maximum eigenvalue is not feasible, thus 
a numerical investigation was undertaken. Results obtained are plotted in Fig. 7. In 
accordance with theoretical predictions, there exists an optimum value of the 
relaxation factor (N 1.8), corresponding to a three-fold decrease in the number of 
iterations required for convergence as compared to very low (1.1) or very high 
(1.94) values. The curve in Fig. 7 is representative of typical SOR schemes where 
the number of iterations rises sharply as the value of o deviates from its optimum 

FIG. 6. Orthogonal grid, Case C, H = 0.20, 16 x 16 grid. 
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TABLE IV 

Effect of Grid Size (Case C)O 

Grid size MD0 Number of iterations CPU time (set) 

P 1.6” 18 1.68 
162 2.0” 14 4.68 
242 1.7” 20 13.72 
322 1.4” 33 38.39 
402 1.1” 42 75.54 
4a2 1.0” 66 173.57 

a A=0.75. d=l.O, H=0.15, 0=1.8. 

TABLE V 

ElIect of Aspect Ratio (Case C) 

Aspect ratio MD0 Number of iterations 

0.25 21.7” 126 
0.50 4.9” 19 
0.75 2.3” 16 
1.00 2.0” 14 
1.25 1.8” 13 
1.50 1.6” 13 
2.00 1.3” 13 
3.00 1.1” 17 
5.00 0.8” 13 

a A=0.75. H=0.15, w= 1.8, 16x 16 grid. 
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FIG. 7. Effect of relaxation parameter on the number of iterations, Case C, 16 x 16 grid. 
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FIG. 8. Orthogonal grid, Case C, H = 0.15, d= 2.0, 16 x 32 grid. 

value. No significant effect of the value of the relaxation factor on orthogonality 
was noticed. 

To conclude this investigation, a parallel study was carried out to test the 
applicability of the weak constraint method in symmetric regions using the boun- 
dary nodal specification of Case C. Numerical simulations were carried out for the 
region obtained by reflection of the domain ABCDA (Fig. 1) about the AB axis. A 
sharp increase in accuracy (MD0 = 0.6”) was obtained for the base case (A = 0.75, 
d = 2.0, H = 0.15, 8 x 16 grid, o = 1.8, linear shape factor distribution), as compared 
to the accuracy obtained using the boundary correspondence of Case A 
(MD0 = 5.2”). A typical grid for this case is shown in Fig. 8. Although the number 
of iterations increased by almost a factor of two, the resulting substantial increase 
in accuracy suggests that specification of Neumann boundary conditions whenever 
possible is preferred over complete boundary correspondence for the generation of 

TABLE VI 

Effect of Curvature in Symmetric Regions (Case C)” 

H MD0 Number of iterations CPU time (xc) 

0.05 0.5” 12 3.42 
0.10 0.8” 18 4.42 
0.15 0.6” 35 7.66 
0.20 1.4” 32 7.11 

a A=0.75, d=2.0, 0=1.8, 8x16 grid. 
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FIG. 9. Orthogonal grid, Case C, H = -0.15, d= 2.0, 16 x 32 grid. 

good orthogonality grids. At this point, it should also be mentioned that the grids 
obtained for such symmetric regions have orthogonality characteristic slightly bet- 
ter (Table VI) than the grids generated for the non-symmetric region ABCDA with 
identical boundary correspondence and grid size (e.g., MD0 = 0.6” for symmetric 
regions, 16 x 16 grid, compared to MD0 = 1.6” for non-symmetric region, 8 x 16 
grid). 

Finally, the region shown in Fig. 9, obtained by reflection of the domain of Fig. 1 
about the axis CD, was also simulated. It was found that good orthogonal grids 
were generated. However, the accuracy in a 16 x 16 grid was considerably lower 
(MD0 = 2.7”) compared to the grid of Fig. 8. 

4. CONCLUSIONS 

In this article we presented numerical results obtained from the application of the 
method of weak constraint [2] for the generation of orthogonal coordinates in 
physical regions likely to arise in immiscible displacement processes in porous 
media. 

The numerical scheme of successive overrelaxation employed did not produce 
orthogonal grids of good accuracy for typical non-symmetric regions given 
arbitrary complete boundary correspondence, although good orthogonality resulted 
in symmetric regions with a symmetric boundary correspondence. By contrast, 
orthogonal grids of excellent accuracy are obtained for non-symmetrical regions by 
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specifying a complete boundary nodal distribution (Dirichlet conditions) on one of 
the boundaries, while leaving the boundary correspondence unspecified (Neumann 
conditions) on the other boundaries. 

The accuracy in orthogonality in a strong function of the domain geometry and 
the specification of shape factor distribution on the boundaries. A linear shape fac- 
tor distribution and symmetric regions were generally found to result in grids of 
higher accuracy. Sensitivity studies indicate that grid size spacing, although strongly 
influencing the rate of convergence, appears to have a marginal effect on 
orthogonality control. 

It is anticipated that orthogonal mapping using the method of weak constraint 
can be successfully applied in the numerical simulation of typical immiscible dis- 
placement processes in porous media. 
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